A quantum categorification of the Alexander polynomial
نویسندگان
چکیده
Using a modified foam evaluation, we give categorification of the Alexander polynomial knot. We also purely algebraic version this knot homology which makes it appear as infinite page spectral sequence starting at reduced triply graded link Khovanov--Rozansky.
منابع مشابه
A categorification of the Jones polynomial
2 Preliminaries 5 2.1 The ring R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The algebra A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Algebra A and (1+1)-dimensional cobordisms . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Kauffman bracket . . . . . . . . . . . . . . . . . . . ...
متن کاملOn Khovanov’s Categorification of the Jones Polynomial
The working mathematician fears complicated words but loves pictures and diagrams. We thus give a no-fancy-anything picture rich glimpse into Khovanov’s novel construction of “the categorification of the Jones polynomial”. For the same low cost we also provide some computations, including one that shows that Khovanov’s invariant is strictly stronger than the Jones polynomial and including a tab...
متن کاملCategorification of the Dichromatic Polynomial for Graphs
For each graph and each positive integer n, we define a chain complex whose graded Euler characteristic is equal to an appropriate nspecialization of the dichromatic polynomial. This also gives a categorification of n-specializations of the Tutte polynomial of graphs. Also, for each graph and integer n ≤ 2, we define the different one variable n-specializations of the dichromatic polynomials, a...
متن کاملA new property of the Alexander polynomial
Alexander introduced his link invariant by a state model in 1928. We consider a slightly different state model for links in the solid torus (e.g. knots in the complement of their meridian). The result is a link invariant which coincides with the Alexander polynomial up to some normalisation. This normalisation depends not only as usual on the writhe of the link diagram but also on its Whitney i...
متن کاملThe Alexander Polynomial for Tangles
WExpand@expr_D := Expand@expr . w_W ¦ Signature@wD * Sort@wDD; WM@___, 0, ___D = 0; a_ ~WM~ b_ := WExpandADistribute@a ** bD . Ic1_. * w1_WM ** Ic2_. * w2_WM ¦ c1 c2 Join@w1, w2D E; WM@a_, b_, c__D := a ~WM~ WM@b, cD; IM@8<, expr_D := expr; IM@i_, w_WD := If@MemberQ@w, iD, -H-1L^Position@w, iD@@1, 1DD DeleteCases@w, iD, 0D; IM@8is___, i_<, w_WD := IM@8is<, IM@i, wDD; IM@is_List, expr_D := exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometry & Topology
سال: 2022
ISSN: ['1364-0380', '1465-3060']
DOI: https://doi.org/10.2140/gt.2022.26.1985